Apache Ozone Best Practices at Didi

Overview

As Didi's volume of unstructured data continues to grow, the number of stored files has increased
significantly, putting mounting pressure on the HDFS metadata service. The deployment of the
Ozone service has effectively addressed this pain point. Ozone has been running in production
at Didi for over two years. As of now, it manages hundreds of PB of storage and tens of billions of
files. The scale of the Ozone cluster is illustrated in Figure 1. This article introduces the evolution
of Ozone at Didi.

Multiple Clusters Thousands of Nodes Hundreds of PB Storage Tens of Billions Files

Figure 1. Ozone Cluster Scale

Why Ozone

Apache Ozone is a distributed object storage system and the next-generation bigdata storage
engine in the Hadoop ecosystem. Ozone not only inherits the excellent design features of HDFS,
such as high reliability and scalability, but also addresses the file count limitation issue in HDFS.
Compared to HDFS, Ozone stores metadata in RocksDB, which avoids memory bottlenecks.
Furthermore, Ozone separates its metadata services into OM (Ozone Manager) and SCM
(Storage Container Manager), improving overall service performance. The data management
granularity is upgraded from blocks to containers, greatly reducing the pressure caused by block
report storms. Ozone is especially suitable for storing small files. A comparison of Ozone and
HDFS architectures is shown in Figure 2.

HDFS Ozone
Metadata In memory In RocksDB
Max File Count Hundreds of millions Tens of billions

Redundancy Mechanism Replication / EC Replication / EC

HDFS Ozone

N s3 protocol —>» S3G
hadoop client —» Ememory O*M SCM
: e ; P——
: ozone client —» EfOCdeb | —>{ rocksdb
— S | [nemespece] | ||
heartbeat . — A ---------------

| heartbeat

I .
block DN DN

Figure 2. Architecture Comparison between Ozone and HDFS

Practice

1. Support for Multi-Cluster Routing

Ozone stores metadata on disk, resulting in little pressure when storing small files. In practice,
we found that as the number of files and access frequency surged, the OM faced challenges
related to SSD storage capacity and RPC congestion. To address these issues, we drew
inspiration from HDFS ViewFs and implemented multi-cluster routing on the client side. By
maintaining a mapping between paths and clusters, requests with different characteristics are
routed to their corresponding target paths in the appropriate clusters. For example:

vol/bucket/prefixl --> clusterl(vol/bucketA/prefixX)
vol/bucket/prefix2 --> cluster2(vol/bucketB/prefixY)

Figure 3 illustrates the overall architecture. After rolling out this solution, we gradually added
multiple clusters and kept the number of files in each cluster under 5 billion. This effectively

alleviated RPC pressure and enabled elastic scaling of storage resources.

Ozone Client S3G

§ L —> ;
8 4 viewfs viewfs Router

ii Vl vl

Cluster1 Cluster2 ClusterN

Clusters

OM/SCM /DN OM/SCM /DN OM/SCM /DN

Figure 3. Ozone ViewFs Support Architecture

2. OM Follower Read for S3G in Internal Scenarios

The latency and throughput of OM’s RPC processing are critical to the overall performance of the
system. In the current OM HA implementation, all RPC requests are handled exclusively by the
Leader OM, which may become a performance bottleneck and result in higher metadata access
latency.

OM HA uses Apache Ratis (a Java implementation of the Raft consensus algorithm) for state
synchronization. By default, OM in HA mode consists of one Leader and several Follower nodes.
Write operations are handled by the Leader and replicated to the Followers, while read
operations must also go through the Leader to ensure linearizability.

To improve read performance, we explored enabling Followers to serve read requests. The Raft
protocol supports linearizable reads through either the Readlndex or Lease mechanism (already
implemented in Ratis, see RATIS-1557). Based on this, we proposed two approaches:

- Directly reading from Follower nodes: This approach does not guarantee linearizability
and carries the risk of returning stale data.

- Submitting read requests through Ratis: This ensures linearizability via the Raft
protocol, but in our current testing, its performance did not meet internal latency
requirements.

Given internal business requirements, where S3G download latency is critical but data
consistency can be relaxed, we optimized both S3G and OM. In S3G, in addition to the original
ozoneClient for RPC communication with OM, we introduced a dedicated read client that
establishes connections with all OM nodes and prioritizes the best available connection. To
select the optimal client, we introduced a heartbeat thread (the probeTask, executed every 3
seconds by default) that evaluates the following two factors in real time:

- Lowest OM latency: A new APl was added to retrieve OM latency. The probeTask
calls this API to query all OM nodes and select the one with the lowest latency.

- Freshness of data: Another new APl retrieves the lastAppliedIndex of each OM
node. The probeTask uses this APl to check the lastAppliedIndex of all OM nodes.
If an OM's index falls behind a predefined threshold, its data is considered stale, and that
OM will no longer handle read requests. The client will prioritize reading from the OM with
the most up-to-date index. As shown in Figure 4, when the appliedindex of the master02
OM node falls significantly behind, this Follower node will no longer participate in read
operations during that period.

2025-04-15 10:54:36,876 INFO org.apache.hadoop.ozone.s3.RefreshFollowerClientService:
Sorted clients:

{

FOLLOWER:om2:master02:9862/(0.280119ms)/index:42769979562/count:3791226
FOLLOWER:om1:master01:9862/(0.320800ms)/index:42769979562/count:3791226
LEADER:om0:master00:9862/(0.477696ms)/index:42769979563/count:3791226

}

https://issues.apache.org/jira/browse/RATIS-1557

OM_RatisStateMachineAppliedindex

28,300,000,000

28,250,000,000

28,200,000,000

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 00:00 01:00

Name Min Last v
== ozonemaster.ratis.state_machine.appliedindex.Value{HostName= ozonemaster02 28,183,188,039 28,304,178,057
ozonemaster.ratis.state_machine.appliedindex.Value{HostName= ozonemaster01. 28,183,188,039 28,304,177,972
== ozonemaster.ratis.state_machine.appliedindex.Value{HostName= ozonemasterO0 28,183,188,036 28,304,177,813

Figure 4. The Follower node's index lags behind in a short period

After the above logic, the reference to the persistent read client will continuously update to the
optimal client, as shown in Figure 5.

OM Leader OM Follower OM Follower
handleWrite handleRead handleRead handleRead
K ,1 A P
heartbeat heartbeat T hearltbeat
: - | R
return latency and lastAppliedindex

7 -
, -
. _-"

update client =

S3G

Figure 5. S3G update client continuously

After going online, the S3G download latency was significantly reduced, and downloading data
was no longer affected by the RPC pressure from the OM Leader. The p90 latency
(GetMetaLatency) of the upgraded S3G decreased from a weekly average of 90ms to 17ms. In
the best cases, it dropped from several tens of milliseconds to less than 3ms. The S3G latency
monitoring before and after the update is shown in Figure 6-1 and Figure 6-2.

s3gateway GetKey META P90

® 2024-06-13 00:00:00 to 2024-06-21 00:00:00

117 mins
1 min
50s
40s
30s
20s
10s
Ons dl . A P el /Aim
06/13 00:00 06/14 00:00 06/15 00:00 06/16 00:00 06/17 00:00 06/18 00:00 06/19 00:00 06/20 00:00
Name Mean Max
s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozonel262.... 99.5 ms| 112 mins
== s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozonel291.... 120 ms 439 s
== s3gateway.GetKeyMetadataLatencyNs60s90thPercentileTime{HostName= -0zonel1320.... 78.6 ms 238s
== s3gateway.GetKeyMetadataLatencyNs60s90thPercentileTime{HostName= -o0zonel1350.... 73.0 ms 256 s
== s3gateway.GetKeyMetadataLatencyNs60s90thPercentileTime{HostName= -0zonel1360.... 97.9 ms 591s
== s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozonel409.... 72.4ms 296 s
== s3gateway.GetKeyMetadataLatencyNs60s90thPercentileTime{HostName= -ozonel438.... 97.2 ms 335s

s3gateway GetKey META P90

Figure 6-1. S3G Download Latency Monitoring Before Going Online

® 2024-06-2100:00:00 to 2024-06-28 00:00:00

35s
30s
25s
20s
15s
10s
5s
0 ns b " .N 1L 4 | s AIJ. i
06/2100:00 06/22 00:00 06/23 00:00 06/24 00:00 06/25 00:00 06/26 00:00 06/27 00:00
Name Mean Max
s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozonel262.... 2.52ms 668 ms
== s3gateway.GetKeyMetadataLatencyNs60s90thPercentileTime{HostName= -ozonel291.... 1.89 ms 369 ms
== s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozonel1320.... 276 ms 2.33s
== s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozone1350.... 41.8 ms 31.3s
== s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozone1360.... 2.94 ms 835 ms
== s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozonel409.... 20.2ms 2.04s
== s3gateway.GetKeyMetadatalLatencyNs60s90thPercentileTime{HostName= -ozone1438.... 28.7 ms 2.28s

Figure 6-2. S3G Download Latency Monitoring After FollowerRead Goes Online

3. Read Performance Optimization

Performance optimization for read and write operations is a challenge that every storage system
must address. Read performance optimization covers a wide range of aspects. In general,
performance optimization focuses on two key objectives: reducing latency and increasing
throughput. In practice, optimizing performance often involves making trade-offs between
minimizing latency and maximizing throughput to achieve the best overall system efficiency.

Typical Internal Read/Write Scenarios

Our internal workload is a typical read-heavy / write-light scenario. Users are generally not
sensitive to write latency, but are extremely sensitive to read latency, especially in first-frame

read scenarios. In a first-frame read scenario, only parts of the file, such as the header and footer
are read, without downloading the entire file, as shown below.

request1 | request2 request... request3

Figure 7. lllustration of a First-Frame Request

This process requires five |O requests, each reading roughly 1MB of data. For a 7200 RPM
HDD, a single 1MB access typically takes around 30-50 ms, resulting in a total of roughly
150-250 ms for all five accesses. Our goal is to guarantee the performance of the whole link
(including 1/O latency, network latency, and RPC overhead, etc.) of the first-frame read, with a
target P97 latency of less than 700 milliseconds.

E M BpITHER(5)

EE RAME BMA Sit: BEEpT v
0.85 1.81 0.69

2024-12-07

BFENP97 THRUEFEA P97 g 97 n97 7 = p97 s3 clientANiakFERfp97 2597

Figure 8. P97 read latency lllustration

In the internal practice process, we focus on the optimization and exploration of the following key
aspects based on our own data access characteristics, which will be explained in detail in the
following chapters.

3.1 Cache Optimization

Ozone is deployed on HDD-based servers, where disk latency and limited IOPS often lead to
access jitter under heavy load, making it difficult to meet first-frame performance requirements.
To address this, we designed and implemented a heterogeneous storage-based caching system
that improves overall performance while keeping costs under control.

This caching solution enhances read and write performance by optimizing the 1/O path and using
NVMe drives as a cache layer for HDDs, significantly accelerating data reads and reducing
response latency.

3.1.1 Selecting an Appropriate Caching Medium

Memory is the ideal caching medium, such as in HBase's BlockCache. However, our
storage-oriented servers have limited memory and off-heap capacity. Relying solely on memory
leads to frequent cache evictions, reduced hit rates, and degraded performance, especially with
large datasets.

To address this, we use heterogeneous servers with 10 HDDs and 2 NVMe SSDs. HDDs offer
large capacity for regular data, while NVMe provides high-speed access for hot data. By
distributing data appropriately between HDD and NVMe, we improve cache efficiency and overall
system performance.

3.1.2 Cache Granularity and Cached File Selection

In our system, the stored data exceeds several hundred PB, with tens of billions of files. The
majority of the data is stored in EC (Erasure Coding) format, and the average size of each file is
around tens of MB. We cannot cache all file content, which presents a significant challenge: how
to optimize data access performance within limited cache space, especially to improve first-frame
access speed.

Considering the above, we decided to implement a strategy of caching the first Chunk of each
Block. Each Chunk is 1MB, and we cache all data from the first stripe of the EC block. For
example, with EC-6-3-1024K, the caching strategy covers 9MB of data, including 6MB of actual
data and 3MB of parity. The 6MB of actual data is sufficient to meet most first-frame access
requirements, significantly reducing disk access latency and improving first-frame loading speed.

It is worth noting that this caching strategy provides strong fault tolerance. Even if data is lost on
certain DataNodes (DN), the cached data stored on faster NVMe drives can accelerate the
reconstruction and recovery process during data read.

Through this first-Chunk-based caching optimization strategy, we achieve efficient data access
within limited cache space and ensure rapid recovery during system failures or data loss,
maintaining high data availability.

1M - chunk1

1M - chunk2

1M - chunk3

1M - chunk4

1M - chunk5

1M - chunk6

| Ozone

. Client ‘

EC Container Block Group

Filled by Filled by Filled by Filled by Filled by
previous previous previous previous previous
file blocks file blocks file blocks file blocks file blocks
c1:block1 c1:block1 c1:block1 c1:block1 c1:block1
chunki chunk2 chunk3 parity parity
chunk4 chunk5 chunk6 parity parity
\ 4
HDD

E@chunk

E@chunk

E Mchunk

Figure 9. NVMe Cache Architecture

3.1.3 Cache Lifecycle and Read/Write Strategy

{
Block1 Block2 Block3
Container
v NVME
chunk-cache-data
» chunk -|» chunk -l » chunk
Container

The caching strategy covers both read and write operations, with the specific process shown in

Figure 10.

readChunk writeChunk

}

hintCache? > —y——> readFromCache
N
\%

readFile —async—>| writeCache <—async— writeFile

. v

return return

Figure 10. Cache Read/Write Architecture Diagram
- Meta Information Management

Meta information is a critical part of the caching system, and it is stored in a key-value (KV)
format to manage the location of each Chunk. The unique identifier for each Chunk
(ChunkName) consists of containerlD-blockID-chunkNum. Using Meta information, we can
quickly query the disk location of each Chunk, enabling efficient cache access.

- Read-Cache

When processing a read request from the user, the system first checks the Meta cache to
determine if the requested Chunk is already cached. If the Meta information records the cache
location, the system directly reads the corresponding Chunk file from the NVMe drive, greatly
improving read speed. If there is no cache hit, the system follows the normal read logic, fetching
data from the disk, and asynchronously writes the Chunk to the cache after the read is complete,
updating the Meta information.

- Write-Cache

To further improve cache hit rates, we also update the cache during the file write process. When
a user performs a write operation, the system not only writes the data to the regular disk storage
(e.g., HDD) but also asynchronously writes the first Chunk of each Block to the cache. This
mechanism ensures that the relevant data being written is quickly reflected in the cache,
improving the hit rate for subsequent accesses to this data.

- Cache Management and Eviction Strategy

To maintain efficient cache usage within limited storage space, we use LRU strategy. LRU
ensures that when cache space is tight, data with the lowest usage frequency is evicted first,
allowing high-frequency accessed data to remain in the cache for extended periods, thereby
improving data access performance. When the cache reaches its limit, the system automatically
cleans up cache entries based on the LRU rule, freeing up space for new hot data.

- DN-side Cache Monitoring Function

To better understand and manage cache usage, we have developed a dedicated cache
monitoring function on the DataNode (DN) side. This monitoring capability can track and record
cache hit rates, cache usage, and the health status of the cache in real time, helping us get a
comprehensive view of the cache system's performance.

With the cache monitoring feature, we can monitor the cache hit rate in real time, including the
number of cache hits, misses, and dynamic changes in the hit rate. This provides us with an
intuitive understanding of cache efficiency and helps identify whether cache space is being fully
utilized. Monitoring data not only assists in optimizing cache strategies but also helps us identify
potential performance bottlenecks.

HDDS Datanode Service Metrics v Configuration ~ Documentation ~ Common tools + 10 Status Data Scanner

Read Performance

Directory ReadBytes ReadOpCount ReadAvgTime ReadL 0s(P90) ReadL) ReadLatency60s(P99)
=5 “W™/hddsdata/hdds 12860571458810 13258300 0.00 ms 0.00 ms 0.00 ms 0.00 ms
B0 A Pl hddsdata/hdds 12831188843214 13237972 0.17 ms 0.00 ms 0.00 ms 1.00 ms
- "w «/hddsdata/hdds 15481728846030 15869700 0.00 ms 0.00 ms 0.00 ms 0.00 ms
w ol w»/hddsdata/hdds 12778869354570 13226398 0.17 ms 0.00 ms 1.00 ms 1.00 ms
| =@ 'hddsdata/hdds 11420972834268 11863718 0.22 ms 0.00 ms 0.00 ms 1.00 ms
[| " “¥'hddsdata/hdds 11049626768962 11546180 0.00 ms 1.00 ms 1.00 ms 1.00 ms
= .. k.N/nddsdata/hdds 11278217457368 11806878 0.00 ms 0.00 ms 0.00 ms 0.00 ms
- il 1 /nddsdata/hdds 11857110730638 12335610 0.00 ms 0.00 ms 0.00 ms 1.00 ms
=n = ws/hddsdata/hdds 11844267438046 12323114 0.00 ms 0.00 ms 0.00 ms 0.00 ms
wi e gemy w/hddsdata/hdds 13662084808192 14135908 0.00 ms 0.00 ms 0.00 ms 1.00 ms
Chunk Caches
ChunkCountFromRead ChunkCountFromWrite EvictionCount HitCount L ionCount L ount MissCount
1380504 9105346 0 13668452 0 0 114813828

Figure 11. Cache and Read Performance Overview

> head /e=y" %2 =i peim/hddsdata/chunk-cache-meta/32d1715a-b19a-4276-9e9a-9edf6ac27876

32d1715a-b19a-4276-9e9a-9ed 6ac27876_24241574_111677757248344517_111677757248344517_chunk_1_.writer=/==, . = = =/hddsdata/chunk-cache-data/32d1715a-b19a-4276-9
11677757248344517/111677757248344517_chunk_l.writer

32d1715a-b19a-4276-9e9a-9edt6ac27876_22934005_111677755229045470_111677755229045470_chunk_1_.reader=/5=, = = === j gl =/hddsdata/chunk-cache-data/32d1715a-b19a-4276-9:
11677755229045470/111677755229045470_chunk_1. reader

32d1715a-b19a-4276-9e9a-9ed f6ac27876_24491836_111677757754968255_111677757754968255_chunk_1_.writer=/e==g'= = wiliy, g/hddsdata/chunk-cache-data/32d1715a-b19a-4276-9
11677757754968255/111677757754968255_chunk_l.writer

Figure 12-1. lllustration of Cache Metadata Content

> tree /:--:, .~ §*"= p=a/hddsdata/chunk-cache-data/32d1715a-b19a-4276-9e9a-9edf6ac27876/22294031
/g / B/hddsdata/chunk-cache-data/32d1715a~-b19a-4276-9e9a-9edf6ac27876/22294031
— 111677754305142378
— 111677754305142378_chunk_1l.writer
— 111677754305244055
— 111677754305244055_chunk_1l.writer
> tree /G <" Mmess/hddsdata/chunk-cache-data/32d1715a-b19a-4276-9e9a-9edf6ac27876/12031150
/A = wpem = 3/hddsdata/chunk-cache-data/32dl1715a~-b19a-4276-9e9a-9edf6ac27876/12031150
— 111677751038295849
L — 111677751038295849_chunk_1. reader
— 111677751038378489
L — 111677751038378489_chunk_1. reader
o 111677751038295849_chunk_1.reader

Figure 12-2. lllustration of Cached Chunk

This improvement brought us at least a 100 ms performance gain.

3.2 Concurrency Optimization

Optimizing the granularity of locks reduces contention and enhances system performance in
multi-threaded scenarios.

In practice, we observed latency issues even when repeatedly reading the same data block. We
noticed that this was related to the spin lock in ChunkUtils#processFileExclusive, as addressed
by the community patch HDDS-11281.

The core changes introduced in this patch are as follows:

Before improvement:

static <T> T processFileExclusively(Path path, Supplier<T> op)
throws InterruptedException {
long period = 1;
for (55) {
if (LOCKS.add(path)) {
break;
} else {
Thread.sleep(period);
// exponentially backoff until the sleep time is over 1 second.
if (period < 1000) {
period *= 2;
}
}
}
try {
return op.get();
} finally {
LOCKS.remove(path);
}
}

After improvement:

private static Striped<ReadWritelLock> fileStripedLock =
Striped.readWriteLock (DEFAULT_FILE_LOCK_STRIPED_SIZE);

try (AutoCloseablelLock ignoredLock = getFileWriteLock(path)) {
FileChannel channel = null;
try {
channel = open(path, WRITE_OPTIONS, NO_ATTRIBUTES);
try (FileLock ignored = channel.lock()) {
return writeDataToChannel(channel, data, offset);

https://issues.apache.org/jira/browse/HDDS-11281

}
} catch (IOException e) {

throw new UncheckedIOException(e);
} finally {

closeFile(channel, sync);

}
}

The improvements mainly focus on the following two aspects:

- Lock Retry Mechanism

In the original implementation, the code repeatedly checks LOCKS.add(path) to determine
whether the lock can be acquired. If not, the thread sleeps using Thread.sleep(period) with
exponential backoff until the lock is successfully obtained. This loop-based retry mechanism
causes excessive thread context switching and resource waste.

After improvement, AutoCloseableLock is used to manage the lock, making the retry logic more
concise and avoiding the complexity of manual lock handling.

- Lock Granularity and Performance

The original code uses a global LOCKS set to manage locks for file paths. This approach results
in coarse-grained locking, which can lead to performance bottlenecks when multiple threads
frequently access the same file path.

After improvement, the lock granularity and management are more flexible, reducing lock
contention and improving concurrency and overall system performance.

This optimization led to a performance gain of at least 50ms.

3.3 Disk 1/0O Optimization

Disk I/O issues are a major challenge in system performance optimization, especially in
HDD-based deployment environments, where I/O wait (IOWait) problems are particularly
prominent. Prolonged I/O waits lead to a significant decrease in throughput and an increase in
latency, severely affecting system performance.

izonewrEji - el SAE -ozone™a i . Mhga® . £1 LA com CPU 1
100

80
60 | L4

Frg . |

Percent

20 | &

[:]

11:00 11:28 11:40 12:00
M User Now: 2B.6% Min: 2.9% Awvg: 12.8% Max: 29.5%
M Nice Now: 2.4% Min: ©.8% Avg: 3.5% Max: 30.3%
M System Now: 3.6% Min: 1.8% Avg: 3.5% Max: 6.4%
O Wazit Now: 33.3% Min: 3.1% Avg: 31.2% Max: 57.4%
MW Steal Now: ©.0% Min: ©.8% Avg: 0.8% Max: ©.0%
W Sintr Now: 8.6% Min: ©.3% Avg: 0.6% Max: 1.0%
O Idle MNow: 32.2% Min: 23.8% Avg: 49.0% Max: 80.8%

Figure 13. Ozone IOWait lllustration

To optimize I/O performance, we rely on system monitoring tools such as pidstat, ps, top, atop,
iotop, and readlink to analyze I/0O usage and identify bottlenecks. During the analysis, we found
that many I/O operations are triggered by management actions, such as data deletion, EC data
reconstruction, and decommissioning machines. These unordered 1/O requests consume a large
amount of resources, with the impact being especially noticeable under high load.

The figure below is a sample jstack from a DataNode, showing that the periodic scans performed
by the BackgroundContainerDataScanner are the main cause of the high IOWait observed on
the server.

hddsdata/hdds)" #174 daemon prio=5 os_prio=0 cpu=1390819.30ms elapsed=239220.865 tid=0x00007187984783b0 nid=0xPERREI] runnable [0x00007187956e5000]

| ContainerDataScanner / a/hdd 5 os_p 8 cpu=135 - 2392 s 8 479586 nid=6x13dd4c runnable [0x8080787955¢4000]

Figure 14. Ozone BackgroundContainerDataScanner jstack
To address the issue, we implemented several optimization measures.
3.3.1 Throttling Container DataScanner

The DataNode’s background service, BackgroundContainerDataScanner, launches a separate
thread for scanning containers on each volume. While this scanning is critical for monitoring the
health and status of containers, it may occur at any time, potentially causing 1/O fluctuations and
increasing system I0OWait.

To mitigate this, we restrict scanning to off-peak hours—specifically between midnight and 5
AM—to avoid impacting business workloads during peak periods. Additionally, we limit the
amount of data processed in each scan iteration to reduce system load and ensure that other
critical operations remain unaffected.

Below are some parameter configurations used in practice:

<property>
<name>hdds.datanode.read.chunk.threads.per.volume</name>
<value>20</value>

</property>

<property>

<name>hdds.container.scrub.enabled</name>
<value>true</value>

</property>

<property>
<name>hdds.container.scrub.volume.bytes.per.second</name>
<value>2097152</value>

</property>

<property>
<name>hdds.container.scrub.on.demand.volume.bytes.per.second</name>
<value>2097152</value>

</property>

<property>
<name>hdds.container.scrub.off-peak.hour</name>
<value»9,1,2,3,4,5</value>

</property>

<property>
<name>hdds.container.scrub.off-peak.ratio</name>
<value>3</value>

</property>

New Parameter Descriptions:

e hdds.container.scrub.off-peak.hour: Defines the specific time range considered
as off-peak hours.

e hdds.container.scrub.off-peak.ratio: Specifies the speed ratio of scrub
operations between off-peak and peak hours.

For example, setting this ratio to 3 means that the scrub speed during off-peak hours is three
times faster than during peak hours. This configuration ensures efficient scrubbing during
low-traffic periods while throttling it during peak times to avoid adding unnecessary |/O pressure
on the DataNode.

3.3.2 Dynamically Planned Data Deletion
Ozone’s data deletion process consists of three stages:

e Stage 1: The OM selects the containers and blocks to be deleted and sends the requests
to the SCM.

e Stage 2: The SCM issues delete commands to the corresponding DataNodes based on
the replica status and tracks the deletion progress.

e Stage 3: The DNs execute the deletion operations.

To minimize the performance impact of deletion operations, we introduced a dynamic parameter
tuning mechanism that adjusts deletion intervals and batch sizes based on system load. During
peak hours, the number of deletion commands is reduced to lower I/O pressure and ensure
stable read/write performance. During off-peak hours, the system increases deletion throughput
to leverage idle resources and accelerate the cleanup process.

This dynamic adjustment strategy effectively avoids performance degradation during high load
and improves overall system efficiency when resources are sufficient.

3.3.3 Point-to-Point Data Transfer

In large-scale server environments, issues such as rack power overload or switch failures often
require some machines to be taken offline and decommissioned. These decommission
operations can trigger large-scale data transfers and replications within the Ozone system,
resulting in a high volume of random I/O requests and degraded service performance.

To mitigate this impact, we introduced a point-to-point data transfer mechanism. When a machine
needs to be decommissioned, the system selects an idle server from another rack to directly
perform data migration with the target machine, avoiding involvement of other nodes. This
approach effectively reduces the scope of random I/O requests, eases system load, and ensures
stable business operations.

B Hide/Show Events

= a1 nm Network last
1.2 6
1.8 6
8.8 6
8.6 6
8.4 6

Bytes/sec

8.2 G

6.0

Thu 83 Sat @7 Hon 69

E In Now:167.7M Mim: 9.8M Awvg:187.1M Max:348.3M
B Out MNow:143.8M Min: 5.0M Awg:329.2M Max: 1.2G

Figure 15. Point-to-Point Data Transfer network usage

3.4 Request Retry and Fault Tolerance

In practice, we observed that a sudden increase in the latency of certain individual requests can
severely degrade system performance. This phenomenon is commonly referred to as "Long
Request Blocking." To address this issue, we have implemented the following measures:

- Server-side Fast Failure & Client-side Retry

To prevent long request blocking and resource occupation, when a request times out, the server
actively disconnects the request and notifies the client to retry. This approach helps reduce a
large number of ineffective waiting operations, prevents requests from occupying system
resources for extended periods, and ensures the system can continue processing other requests.

- DN-side Quick Retry during readChunk

Considering the relatively high cost of user-initiated retries for data reads, we optimized the retry

strategy to minimize unnecessary retries. Noticing that the normal disk response time for reading
a 1MB chunk is about 50ms, we set a threshold: if the response time exceeds 100ms, the DN will
proactively abort the current read request and initiate a new thread to access the chunk.

This effectively prevents threads from being blocked for extended periods, improving the
system's throughput and response speed.

3.5 S3G Read Cache Optimization

In practice, we observed that some slow queries were caused not by slow data reads from the
DN, but by delays in S3G receiving the data, which led to increased first-frame latency for the
application. Code analysis revealed that during data reception from the DN, S3G uses a
byteBuffer to read data per I/O operation. The default buffer size is 4KB, which can result in
multiple network I/O operations. Increasing the buffer size to match the typical request size can
help ensure that data transmission is completed in a single network 1/0.

In the community-optimized version, the buffer size has already been increased to 4MB. See
issue: HDDS-11483.

4. EC Practice

At the beginning, we adopted a 3 replica storage policy. However, as data grew rapidly, we faced
significant storage cost pressure. With daily data growth exceeding 1PB and the annual total
expected to surpass 500PB, the cost of storage hardware far exceeded our budget. As a result,
we decided to revise our storage policy.

Erasure Coding (EC) provides an alternative to traditional replication. We selected the
EC-6-3-1024K policy to replace the 3 replica solution. It reduces the replication factor to
approximately 1.5, effectively cutting storage usage by half compared to 3 replica. The adoption
of EC has delivered substantial cost savings. However, during the practice of EC-based storage,
we also encountered several challenges, as outlined below.

4 1 Efficient Deletion

During the data deletion process, we encountered performance bottlenecks, where deletion
speed fluctuated significantly. These inconsistencies hindered steady progress and led to a
growing backlog of data pending deletion.

Upon analyzing the code, we identified a critical detail. When SCM issues deletion requests for
block replicas, it does not dispatch all requests to the DataNodes (DNs) at once. For example, in
the case of EC data using the EC-6-3-1024K format, deletion requires removing 9 replicas.
However, SCM often only issues deletion requests for 5 or 6 of them. As a result, even if the DNs
successfully delete those replicas, the remaining 3 are not marked as deleted. These replicas are
not cleared in time and remain until the system times out and re-initiates the deletion process.

https://issues.apache.org/jira/browse/HDDS-11483

scm deletedBlocks_estimate_num_keys

38,000,000

36,000,000

34,000,000

32,000,000

30,000,000

28,000,000

26,000,000

24,000,000

22,000,000

20,000,000

18,000,000

16,000,000

14,000,000

12,000,000

10,000,000

8,000,000

6,000,000
09/1612:00 09/1700:00 09/1712:00 09/1800:00 09/1812:00 09/1900:00 09/1912:00 ~ 09/2000:00 09/2012:00 ~ 09/2100:00 ~ 09/2112:00 09/2200:00 ~ 09/2212:00 ~ 09/2300:00 ~ 09/2312:00 ~ 09/2400:00 ~ 09/2412:00 09/25 00:00
Name. in e

- estimate_num_keys 8921583 12,996713 35,090,291 22,084178

Figure 16-1. lllustration of Deletion Backlog Before Optimization

We submitted HDDS-11498: Improve SCM Deletion Efficiency, and with the support of the
community, successfully implemented the enhancement. This optimization significantly improved
the efficiency of deletion.

scm deletedBlocks_estimate_num_keys

25,000,000

20,000,000

15,000,000

10,000,000

5,000,000

o
09/25 00:00 09/25 08:00 09/2516:00 09/26 00:00 09/26 08:00 09/26 16:00 09/27 00:00 09/27 08:00
jame Mean ax Last

- estimate_num_keys 1496180 15,843,066 22,226,200 2,122,447

Figure 16-2. lllustration of Deletion Process After Optimization

Deletion parameters used:

--OM

ozone.path.deleting.limit.per.task 150000
ozone.directory.deleting.service.interval 180s
ozone.key.deleting.limit.per.task 150000
ozone.block.deleting.service.interval 180s

-- SCM

hdds.scm.block.deletion.per-interval.max 2000000
hdds.scm.block.deleting.service.interval 300s

https://issues.apache.org/jira/browse/HDDS-11498

4.2 EC Replica Insufficient Issues

After restarting the SCM service, we encountered an issue where clients frequently reported
errors such as "There are insufficient datanodes to read the EC block," which negatively
impacted the stability of the service.

The root cause of the replica shortage issue lay in the design of SCM's Safe Mode. Specifically,
Safe Mode did not originally support EC containers. In theory, when SCM is in Safe Mode and
encounters an EC container, it should ensure that the container has the minimum required
number of replicas. For example, with the EC-6-3-1024K policy, a container should have at least
6 data replicas.

However, earlier versions mistakenly treated EC containers as if they were using a 3 replica
policy. As a result, SCM would consider the container "healthy" once it received just 3 replica
reports, leading to a premature exit from Safe Mode.

This behavior caused two major issues:

e Replica Insufficient: Since the number of EC replicas did not meet the expected 6,
clients encountered errors when accessing those containers, significantly affecting user
experience and service stability.

e Incorrect Safe Mode exit: SCM exited Safe Mode prematurely without verifying that EC
containers had sufficient replicas.

To effectively resolve this issue, we contributed two pull requests to the community:

e HDDS-11209: Avoid insufficient EC pipelines in the container — This PR addressed
the potential issue where OM might cache incomplete EC pipelines, ensuring the
pipelines are fully cached.

e HDDS-11243: SCM SafeModeRule Support EC — This PR enhanced SCM's Safe Mode
logic to fully support EC containers, preventing the replica shortage issue caused by the
previous lack of EC handling.

Safemode rules statuses
Rule Id Rule definition Passed
DataNodeSafeModeRule Registered DataNodes (=696) >= Required DataNodes (=696) / Total DataNode (703) true
HealthyPipelineSafeModeRule Healthy RATIS/THREE pipelines (=4277) >= healthyPipelineThresholdCount (=4277) true
DatanodeReportedRule Reported RATIS/THREE pipelines with at least one datanode (=3891) >= threshold (=3888) true

ContainerSafeModeRule 99.02% of [Ratis]Containers(57910 / 58484) with at least one reported replica (=0.99) >= safeModeCutoff (=0.99) true
99.21% of [EC]Containers(3982763 / 4014452) with at least N reported replica (=0.99) >= safeModeCutoff (=0.99)

Figure 17. Safemode rules statues

4.3 Repeated EC Reconstruction Issue
During EC block recovery, a problem was encountered where reconstruction repeatedly failed,
triggering retries across many machines and resulting in a large number of abnormal I/O

operations. The error message was as follows:

java.lang.IllegalArgumentException: The chunk list has 2 entries, but the

https://issues.apache.org/jira/browse/HDDS-11209
https://issues.apache.org/jira/browse/HDDS-11243

checksum chunks has 3 entries.
They should be equal in size.

Due to the limited logging available on the DN, we added additional logs on some DNs to write
reconstruction errors into the audit. log file. These logs revealed numerous issues with block
reconstruction.

2024-07-25 07:25:15,830 | ERROR | DNAudit | user=null | ip=null |
op=RECOVER_EC_BLOCK {blockLocationInfo={blockID={conID: 951772 locID:
113750155032021583 bcsId: 0}, length=25165824, offset=0, token=null,
pipeline=Pipeline[Id: cc205dc9-49al1-4c07-92b9-0c27504268b6, Nodes: ...,
excludedSet: , ReplicationConfig: EC{rs-6-3-1024k}, State:CLOSED, leaderId:,
CreationTimestamp2024-07-25T07:23:12.013617185+08:00[Asia/Shanghai]],
createVersion=0, partNumber=0}} | ret=FAILURE |
java.lang.IllegalArgumentException: The chunk list has 4 entries, but the

checksum chunks has 5 entries. They should be equal in size.

Upon further analysis, we traced that the reconstruction failures occurred due to miscalculated
checksum chunk selection during recovery.

In EC recovery, the system chooses a smaller BlockGroupLength to reconstruct the data.
However, during validation, it mistakenly used the chunk size from the corrupted (dirty) data to
verify the reconstructed data. To ensure data is correctly validated, the chunk size used for
verification should match the smaller BlockGroupLength used for reconstruction.

After identifying the correct fix, we submitted a patch via PR HDDS-10985: EC Reconstruction
failed because the size of currentChunks was not equal to checksumBlockDataChunks,
which successfully resolved the issue of repeated EC reconstructions.

4.4 Efficient Conversion from Replica to EC

We initially used Hadoop Distcp for converting historical data to EC storage, but encountered
limitations such as unclear migration progress and inflexible error handling. To improve migration
efficiency and flexibility, we switched to a self-developed Spark-based migration tool for the
following reasons:

e Ozone is fully compatible with Spark, enabling efficient processing of large-scale data;
e Spark offers customizable migration logic, checksum validation, and fault tolerance,
which meets our complex requirements.

Conversion process:

e Parse Ozone Image files to extract metadata for the 3 replica data targeted for
conversion;
Use Spark to read the metadata and download the corresponding data;
Write the data in EC format using the EC-6-3-1024K configuration;
Perform checksum and data volume verification to ensure accuracy.

https://issues.apache.org/jira/browse/HDDS-10985

Through this enhancement, we achieved a highly efficient and reliable migration from 3 replica
storage to EC-based storage.

5. Availability And Stability Practices

In addition to the Follower Read optimization, read performance improvements, adoption and
improvements of EC storage, we have also driven a series of enhancements in other areas, as
outlined below:

5.1 Service Monitoring

Service monitoring is a key measure to ensure system performance and stability. We
continuously track and monitor critical metrics such as OM, SCM, and DN performance to ensure
the system remains efficient and stable under high load conditions.

5.1.1 OM/SCM RPC Monitoring

The RPC communication between the client and OM, and between OM and SCM, is a critical
component of the Ozone system. Both OM and SCM RPC can become potential bottlenecks.
RPC backlogs may block request transmission between these components, leading to degraded
service performance or even system crashes.

We have implemented focused monitoring on key metrics related to OM/SCM RPC, primarily
covering the following aspects:

e RPC Request Queue Length: Monitors the backlog of requests in the queue. If the
gueue becomes heavily congested, actions such as load balancing or resource
scheduling may be required.

o RPC Response Time: Tracks the response times of OM and SCM RPCs to ensure that
requests are processed within an acceptable time frame. Prolonged response times may
lead to request accumulation and impact the execution of other operations.

vOMRPCHEXIER @ @

RpcProcessingTimeNumOps Rate RpcProcessingTime AvgTime
20,000
10,000

0)
0413 04715 0an7 04719 04/21 04113

Db erp b b VRS DA L i d i o A pd
0415 04/17 04118 04721
Name ~ Min Max Mean Last* Name Min Max Mean Last*

- ter.Rpch imeNumo| =g ' 8 76 45] - imeAvgTi e ¢t 00779ms 529ms 0614ms 0322ms

8 7 a4 8 - imeAvgTi - ¢ Oms 0457ms 00180 ms oms
- - al s 2087 22153 13058 8204 imeAvaT

Oms 0208ms 00IRAms ams

CallQueueLength RpcQueueTime

2000

1000

ol
',HW.MW,“L“.&' M‘JL‘M ‘h“ M '\\‘Uh\“ “‘w‘,‘ﬂ\”‘\h 'ﬂ. ,“\A‘M“fmJ'ﬂ,mH\"

0413 0415 04n7 0419 04/21 04113 0415 04n17 04/19 04/21
Name - Max Mear Last* Name Min Max Mean Last*
= ozonemaster.CallQueueLength{HostName= . - ¥ 0 2282 160 1 -

=) 0ms 000362ms 0.0000271ms oms
oooooooo ter.CallQueueLength{HostNames= 0 1000728 0

| Oms 000604ms 0.0000385ms oms
= o70namaster CallOueual anath{HostName:=: 0 1 0ows 0

- - Y oms 153 ms 0245ms 00853 ms

Figure 18. OM RPC Metrics

5.1.2 OM/SCM Resource Usage Monitoring

OM/SCM, as the metadata node, serves as the control center of the entire Ozone system. If the
load on the metadata servers is too high, such as excessive CPU usage, it can lead to slower
request processing, increased response times, and even resource exhaustion, causing service
unavailability. We monitor the CPU, memory, and disk capacity usage on the master nodes,
allowing us to detect and intervene promptly in case of any abnormalities.

For example, we focus on the following key metrics:

e CPU Utilization: Real-time monitoring of the OM process’s CPU usage to prevent
excessive consumption of CPU resources. We have set alert thresholds so that when
CPU usage approaches the limit, the system automatically triggers alarms to notify
administrators to take action.

e Per-Core Load Distribution: Monitors the load distribution across each CPU core to
ensure balanced usage and avoid overloading any individual core, which could lead to
inefficiencies. Through load balancing and scheduling strategies, we can optimize
resource utilization and improve overall system performance.

5.1.3 DN Performance Monitoring

The performance of DN directly impacts data storage and access efficiency. We monitor key
performance indicators for DN, primarily including:

e Disk I/O Performance: Monitoring the read/write rate and response time of disks to
ensure that DN’s performance does not degrade due to 1/O bottlenecks when processing
data.

e Network Bandwidth Usage: DN'’s data transfer speed is closely related to network
bandwidth. Bandwidth bottlenecks may cause slow data transfer, affecting the overall
performance of the system.

e Memory Usage: Monitoring DN’s memory usage to avoid memory overflow or excessive
consumption, which could lead to system instability.

e Request Handling Capacity: Monitoring DN’s ability to handle requests, including
metrics such as requests per second and average response time. When request handling
capacity decreases, it may be necessary to analyze the bottleneck and take
corresponding optimization measures.

5.2 JDK 17 Upgrade

To improve system performance and stability, we upgraded to JDK 17. This version introduces a
range of enhancements, including improved garbage collection and more efficient compiler
optimizations, which collectively contribute to faster response times and better resource
utilization.

5.3 Ratis Optimizations

We noticed that DataNodes frequently encountered FullGC issues. The root cause was traced to
unreleased off-heap memory. After reviewing community improvements, we backported

RATIS-2065: Avoid the out-of-heap memory OOM phenomenon of frequent creation and deletion
of Raft group scenarios. This effectively resolved the issue.

5.4 OM HA Stability Optimization

During our early use of Ozone version 1.3, a critical issue was identified where the OM in HA
mode would crash and fail to restart. The root cause was a timing inconsistency in write
operations under multi-threaded conditions, which resulted in discrepancies between two key
internal data structures: applyTransactionMap and double-buffer. This inconsistency
subsequently caused failures in the validation logic. Through thorough analysis and with support
from the community, the problem was successfully addressed, as documented in HDDS-9342.
Since the resolution of this issue, OM HA has demonstrated stable and reliable performance in
production.

5.5 Differentiated High-Density storage Practices

We implemented differentiated high-density deployment in storage by creating a high-density
cluster. This cluster uses machines with 60 HDDs, each storing about 1PB, which we use to
store cold data.

5.6 Exploring Rocksdb Size and File Count

OM maintains the organizational structure of file paths, with the corresponding metadata stored
in RocksDB on NVMe SSDs. The capacity of the NVMe SSDs, along with the service’s memory
configuration, directly affects the scale of metadata that can be stored within a single cluster.
Based on our experience, every 100GB of RocksDB size can accommodate approximately 1
billion files. The following data reflects some of our practical observations.

Component | Heap Size (Memory) SSD Size om.db Size File Count
oM 128G >1T 400G ~ 500G =~ 5000 million
Summary

In our practice with Ozone, we have continuously explored and addressed various performance
bottlenecks in large-scale data storage. Through a series of optimization measures, we have
significantly improved the system’s stability and efficiency. Looking ahead, we will continue to
optimize 1/O performance, with plans to introduce IO_URING technology to enhance read and
write efficiency. Additionally, we intend to adopt SPDK technology to further accelerate metadata
access performance in OM and SCM, both of which rely on RocksDB. We would also like to
express our sincere gratitude to the Apache Ozone open-source community. It is through the
community’s open discussions, experience sharing, and excellent code contributions that we
have greatly benefited. We firmly believe that the development of Apache Ozone will continue to
thrive and reach new heights.

https://issues.apache.org/jira/browse/RATIS-2065
https://issues.apache.org/jira/browse/HDDS-9342

	 Apache Ozone Best Practices at Didi
	Overview
	Why Ozone
	Practice
	1. Support for Multi-Cluster Routing
	2. OM Follower Read for S3G in Internal Scenarios
	3. Read Performance Optimization
	3.1 Cache Optimization
	3.1.1 Selecting an Appropriate Caching Medium
	3.1.2 Cache Granularity and Cached File Selection
	3.1.3 Cache Lifecycle and Read/Write Strategy

	3.2 Concurrency Optimization
	3.3 Disk I/O Optimization
	3.3.1 Throttling Container DataScanner
	3.3.2 Dynamically Planned Data Deletion
	3.3.3 Point-to-Point Data Transfer

	3.4 Request Retry and Fault Tolerance
	3.5 S3G Read Cache Optimization

	4. EC Practice
	4.1 Efficient Deletion
	4.2 EC Replica Insufficient Issues
	4.3 Repeated EC Reconstruction Issue
	4.4 Efficient Conversion from Replica to EC

	5. Availability And Stability Practices
	5.1 Service Monitoring
	5.1.1 OM/SCM RPC Monitoring
	5.1.2 OM/SCM Resource Usage Monitoring
	5.1.3 DN Performance Monitoring

	5.2 JDK 17 Upgrade
	5.3 Ratis Optimizations
	5.4 OM HA Stability Optimization
	5.5 Differentiated High-Density storage Practices
	5.6 Exploring Rocksdb Size and File Count

	Summary

