
Hui Fei / Shopee

Apache Ozone Best Practices at Shopee

CONTENTS

1. Overview of Ozone Usage at Shopee

2. Object Lifecycle Management

3. Storage Classes

4. Future plans

Overview of Ozone Usage at Shopee

Overview of Ozone Usage at Shopee

Ozone 1.0 Ozone 1.2 Ozone 1.4

Feb 2021 June 2022 July 2025

Downtime In-service

Overview of Ozone Usage at Shopee
● Code Maintenance

○ Based on the latest stable branch from the community

○ Build proprietary internal features

○ Backport fixes and improvements from the community

● Internal Features

○ Authentication, Authorization

○ Traffic control on S3G

○ Lifecycle Management

○ Storage class

○ …

Overview of Ozone Usage at Shopee

● Scale

○ Clusters are located in different countries and across multiple IDCs

○ Over 100 nodes are deployed

○ There are 3 OM services (3 nodes per service)correspond to one SCM service

(3 nodes per service) in the main cluster

○ S3G provides a unified global interface

● Storage

○ Billions of objects are stored in total

○ Over 10 PB of storage has been utilized

Object Lifecycle Management

Object Lifecycle Management

● Background

○ Too many unused objects need to be cleaned up

○ Users ask the administrator to help clean up unused objects

● Solution

○ An object lifecycle management service

○ It can delete unused objects based on rules set by users

○ The feature should also support AWS features like tagging

Object Lifecycle Management
● AWS S3 Lifecycle configurations

Object Lifecycle Management
● Design

Object Lifecycle Management

● Lifecycle rule

○ id, prefix, enabled, expiration, filter

○ Bind to a bucket

● Comunication protocol

○ Between Ozone client and OM

○ Between AWS client and S3 Gateway

● Retention service

○ Lifecycle table in RocksDB

○ Process rules periodically

Object Lifecycle Management
● Example - put-bucket-lifecycle-configuration

Object Lifecycle Management
● Example - get-bucket-lifecycle-configuration

Object Lifecycle Management

● Rollout at Shopee

○ Released Since June 2023

○ Launched together with tag support later

○ User feedback has been favorable

Object Lifecycle Management

● Contribute it to the community

○ HDDS-8342 - S3 Lifecycle Configurations - Object Expiration

○ The proposal has been accepted by the community

○ The development work is ongoing

Storage Classes

Storage Classes

● Background

○ Performance requirements for hot data

○ Cost-saving requirements for cold data

Storage Classes

● AWS storage classes

The architecture for new data

● OM

● SCM

● DataNode

● Ozone Client

● AWS Client

● S3 Gateway

AWS S3 Storage Classes Ozone StoragePolicy

STANDARD Hot

STANDARD_IA* Warm

GLACIER COLD

Storage Classes

● Mapping between AWS storage classes and Ozone policies.

Storage Policy Storage Tier for Write Fallback Tier for Write

Hot SSD DISK

Warm DISK <none>

Cold ARCHIVE <none>

● Mapping between Storage PoliciesTo volume storage type

Storage Classes
Write key to SSD by S3 command

● aws s3api put-object --bucket bucket1 --key key1 --body localKey1 --storage-class STANDARD_IA --endpoint
http://xxxx

Write key to SSD by ofs command

● ozone sh key put s3v/bucket1/key1 localKey1 -sp HOT

Write key to SSD by API

● createKey (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● reWriteKey (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● createStreamKey (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● createFile (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● createStreamFile (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● initiateMultipartUpload (String volumeName, String bucketName, String keyName, …, StoragePolicy

storagePolicy)

Storage Classes
● Normal write (no fallback):

● Client sends CreateKey request to OM with HOT

● OM requests SCM to allocate Container with HOT

● SCM allocates Container and Pipeline with HOT

● Client gets the mapping from HOT to SSD and writes to DNs

● DNs in the pipeline create Containers or writes Chunks to SSD

Disks

● Fallback write:

● Client sends CreateKey request to OM with HOT

● OM requests SCM to allocate Container with HOT

● SCM allocates Container and Pipeline with HOT. Will fallback to

WARM or COLD if no HOT

● Client gets the mapping from HOT to SSD and writes to DNs

● DNs in the pipeline creates Containers or writes Chunk to SSD

Disks

Storage Classes
ozone sh key info s3v/bucket1/key1

aws s3api head-object --bucket bucket1 --key key1
--endpoint xxx

The architecture for existing data

● OM

○ Lifecycle Manager

○ Storage Policy

SatisfierService

○ Jobworker Command

Listener

● SCM

● JobWorker

Storage Classes

● Lifecycle manager creates Migration Task on OM

side based on the storage policy

● StoragePolicy SatisfierService obtains Migration

Task and encapsulates them into command and

sends them to Jobworker

● Jobworker uses rewriteKey interface to rewrite Key

atomically, and report the command execution

result to OM through heartbeat

● OM updates the status of Migration Task according

to the execution result

Storage Classes

● Rollout at Shopee

○ Release in progress

○ Will enable the EC to save storage

Storage Classes

● Contribute it to the community

○ HDDS-11233 - Ozone Storage Policy Support

○ Will propose detailed design documentation

Future plans

Future plans

● Improve throughput of Ozone cluster

● Enable EC to save storage

● Enhance Ozone S3-related features

● Bucket synchronization across clusters

● Disaster Recovery Plan for Ozone Cluster DC

Hui Fei

Thanks

