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Overview of Ozone Usage at Shopee
● Code Maintenance

○ Based on the latest stable branch from the community

○ Build proprietary internal features

○ Backport fixes and improvements from the community

● Internal Features

○ Authentication, Authorization

○ Traffic control on S3G

○ Lifecycle Management

○ Storage class

○ …



Overview of Ozone Usage at Shopee

● Scale

○ Clusters are located in different countries and across multiple IDCs

○ Over 100 nodes are deployed

○ There are  3 OM services (3 nodes per service)correspond to one SCM service 

(3 nodes per service) in the main cluster

○ S3G provides a unified global interface

● Storage

○ Billions of objects are stored in total

○ Over 10 PB of storage has been utilized
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Object Lifecycle Management

● Background

○ Too many unused objects need to be cleaned up

○ Users ask the administrator to help clean up unused objects

● Solution

○ An object lifecycle management service

○ It can delete unused objects based on rules set by users

○ The feature should also support AWS features like tagging



Object Lifecycle Management
● AWS S3 Lifecycle configurations



Object Lifecycle Management
● Design



Object Lifecycle Management

● Lifecycle rule

○ id, prefix, enabled, expiration, filter

○ Bind to a bucket

● Comunication protocol

○ Between Ozone client and OM

○ Between AWS client and S3 Gateway

● Retention service

○ Lifecycle table in RocksDB

○ Process rules periodically



Object Lifecycle Management
● Example - put-bucket-lifecycle-configuration



Object Lifecycle Management
● Example - get-bucket-lifecycle-configuration



Object Lifecycle Management

● Rollout at Shopee

○ Released Since June 2023

○ Launched together with tag support later

○ User feedback has been favorable



Object Lifecycle Management

● Contribute it to the community

○ HDDS-8342 - S3 Lifecycle Configurations - Object Expiration

○ The proposal has been accepted by the community

○ The development work is ongoing



Storage Classes



Storage Classes

● Background

○ Performance requirements for hot data

○ Cost-saving requirements for cold data



Storage Classes

● AWS storage classes



The architecture for new data

● OM

● SCM

● DataNode

● Ozone Client

● AWS Client

● S3 Gateway



AWS S3 Storage Classes Ozone StoragePolicy

STANDARD Hot

STANDARD_IA* Warm

GLACIER COLD

Storage Classes

● Mapping between AWS storage classes and Ozone policies.

Storage Policy Storage Tier for Write Fallback Tier for Write 

Hot SSD DISK

Warm DISK <none>

Cold ARCHIVE <none>

● Mapping between Storage PoliciesTo volume storage type



Storage Classes
Write key to SSD by S3 command

● aws s3api put-object --bucket bucket1 --key key1 --body localKey1 --storage-class STANDARD_IA --endpoint 
http://xxxx

Write key to SSD by ofs command

● ozone sh key put s3v/bucket1/key1 localKey1 -sp HOT

Write key to SSD by API

● createKey (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● reWriteKey (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● createStreamKey (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● createFile (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● createStreamFile (String volumeName, String bucketName, String keyName, …, StoragePolicy storagePolicy)
● initiateMultipartUpload (String volumeName, String bucketName, String keyName, …, StoragePolicy 

storagePolicy)



Storage Classes
● Normal write (no fallback):

● Client sends CreateKey request to OM with HOT

● OM requests SCM to allocate Container with HOT

● SCM allocates Container and Pipeline with HOT

● Client gets the mapping from HOT to SSD and writes to DNs

● DNs in the pipeline create Containers or writes Chunks to SSD 

Disks

● Fallback write:

● Client sends CreateKey request to OM with HOT

● OM requests SCM to allocate Container with  HOT

● SCM allocates Container and Pipeline with HOT. Will fallback to 

WARM or COLD if no HOT

● Client gets the mapping from HOT to SSD and writes to DNs

● DNs in the pipeline  creates Containers or writes Chunk to SSD 

Disks



Storage Classes
ozone sh key info s3v/bucket1/key1  

 

aws s3api head-object --bucket bucket1 --key key1 
--endpoint xxx

 



The architecture for existing data

● OM

○ Lifecycle Manager

○ Storage Policy 

SatisfierService

○ Jobworker Command 

Listener

● SCM

● JobWorker



Storage Classes

● Lifecycle manager creates Migration Task on OM 

side based on the storage policy 

● StoragePolicy SatisfierService obtains Migration 

Task and encapsulates them into command and 

sends them to Jobworker

● Jobworker uses rewriteKey interface to rewrite Key 

atomically, and report the command execution 

result to OM through heartbeat

● OM updates the status of Migration Task according 

to the execution result



Storage Classes

● Rollout at Shopee

○ Release in progress

○ Will enable the EC to save storage



Storage Classes

● Contribute it to the community

○ HDDS-11233 - Ozone Storage Policy Support

○ Will propose detailed design documentation



Future plans



Future plans

● Improve throughput of Ozone cluster

● Enable EC to save storage

● Enhance Ozone S3-related features

● Bucket synchronization across clusters

● Disaster Recovery Plan for Ozone Cluster DC
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